
The Parallel Web:
How to write a Web Service

in a Functional Programming Language

Henning Thielemann

2nd June 2007

Abstract

The parallel web is an online translation service which modifies the hyper links of a translated do-
cument such that referred documents become translated in turn. This creates the impression that you
navigate through a parallel web which has the same structure like the “original” WWW but contains
translated text.

This article describes an implementation using the pure functional programming language Haskell.
That is the HTML processing and the (toy) translators, as well as the used packages for the web server and
the HTML document download are written in Haskell. We show how the components can be separated
cleanly and safely due to lazy evaluation and strong static typing. This yields a very flexible and secure,
yet efficient program.

1 Introduction

Imperative programming languages like C, its derivatives, and scripting languages, are the usual choice
for today’s software systems. The currently widespread CPUs conform to the imperative programming
paradigm and allow a fast execution of imperative programs. Although web services require a high level
of security, the efficiency aspect seems to be strong enough that C was chosen for wide-spread web servers
like Apache.

Compared to imperative programming languages, functional languages are usually higher level lan-
guages, aiming at higher security and maintainability. The presented web service is implemented in
Haskell [PJ98, Dau04], a functional language that has become very popular in the recent past. The term
Functional Programming[Hug89, Hud89] denotes a kind of program flow that is different from theimper-
ativeone. The program flow is independent from a particular type system and from whether programs can
be compiled or not. IndeedHaskell is strongly typed, including statically checkedpolymorphic typing, and
it can be both interpreted [JR04] and compiled [HHPPJ04]. Because there is no state, no mutable variables
can be declared. This simplifies working in an interactive interpreter. In view of the variety of machine
oriented imperative languages and imperative scripting languages,Haskell is one of the rare languages that
provides both strong static typing and interactive function execution.

Although not recognized as a language for web applications there are a lot of web related libraries and
applications including a web server [Mar00], frameworks for CGI applications [Thi02, Bri07], and libraries
for HTML processing, [Wal07, Sch07, Mit07]. For a more complete list, see

http://www.haskell.org/haskellwiki/Applications_and_libraries/Web_
programming .

2 Functional programming basics

Today functional concepts are integrated into almost every imperative programming language. They allow
for structured and safe programming. A function is a part of a program with some declared input and output.

1

http://www.haskell.org/haskellwiki/Applications_and_libraries/Web_programming
http://www.haskell.org/haskellwiki/Applications_and_libraries/Web_programming

Most imperative languages allow for bypassing the input/output interface by the use of global variables
and by manipulation (update) of input objects. In contrast to that,Haskell disallows or at least strongly
discourages that. This makes things more predictable: If you apply a function to the same argument values
it will always result in the same value. This property is calledreferential transparency. It allows for
effective testing and even rigorous proofs. If you found (by tests or by proofs) that a function returns the
wanted output for a particular input, then the function will reliably return that result for future calls with
the same input.

In this framework it seems to be impossible to communicate with the outer world or to work with,
say random number generators. The functiongetLine , which returns a line of text entered by the user,
can obviously return different values each time called. The same applies to the functionrandom , which
returns a random object of a particular type for each call. It was a big breakthrough to formalize this kind
of functions (and others) by the notion ofmonads. We will consider this issue in more detail in section 3.3.

The functional approach allows features that can be imagined hardly for imperative programming lan-
guages. One such feature islazy evaluation. It means that function arguments and parts of data structures
are only computed if they are needed. Once computed, they are usually stored for later access, or flushed
by a garbage collector, if they become unaccessible. Because of lazy evaluation a list may formally contain
infinitely many elements. This poses no problem since a terminating algorithm will be able to process only
finitely many of them. We will represent our data as potentially infinite list of characters, as list of HTML
tags, and as tree representing the HTML document structure. Data that is read from a web server could be
dynamically generated, and could be indeed infinite. We can cope with this case although we organize our
program as a sequence of transformations of entire lists or trees!

Try yourself in an interactive Haskell environment likehugs or ghci from the GHC package. The
call

Prelude> repeat ’a’
"aaaaaaaaaaaaa...

will flood your display with a never ending sequence of ‘a’s. Admittedly, that is still easy to achieve with
an imperative language emitting characters in a loop. Now transform the whole sequence by turning all
characters to upper case.

Prelude> map Char.toUpper (repeat ’a’)
"AAAAAAAAAAAAA...

This is also possible in an imperative language, e.g. using iterator objects, yet more difficult. Finally we
can clip the infinite list to a finite prefix.

Prelude> take 20 (map Char.toUpper (repeat ’a’))
"AAAAAAAAAAAAAAAAAAAA"

That is, we can formally work with an infinite amount of data. If only a finite amount of data is requested,
which in turn does only depend on a finite amount of input data, then a result can be computed.

Another feature of the functional paradigm arehigher order functions. These are functions that take
other functions as input or return functions as output. While the first one is possible in most popular im-
perative languages, the second one is usually impossible. However taking functions as input is much more
used in functional languages than in imperative ones. It gives you the combinatorial power of combining
functions that traverse through a data structure and functions that process atomic data. It allows the pro-
grammer to create custom loop structures, which take the loop body and termination criteria as parameters
of function type. In short, higher order functions allow definitions of loops, conditional branching and ex-
ception handling with the core language elements. Thus, these control structures need not to be hard-wired
into the language.

Also returning functions as output is very common. In fact mostHaskell library functions do that.
E.g. instead of defining the concatenation of two lists(++) as a function from a pairs of lists to a list,
which would mean type([a],[a]) -> [a] , the operator has type[a] -> ([a] -> [a]) . (The
parentheses could be omitted, since-> is right associative.) Converting the first form to the second one

2

is referred to ascurrying, in honor of HASKELL BROOKS CURRY, who lent his first name to the pro-
gramming language we discuss here. However, it should be noted once again, that the technique is due
to SCHÖNFINKEL, whose name did not seem to be appropriate for a verb likeSCHÖNFINKELN (German)
or SCHOENFINKELING (English). [Tho99] With the curried type of++ it is possible to give only the first
argument, which results in a function. This is calledpartial application. The expression([1,2,3] ++)
denotes the function which prepends[1,2,3] to a list. Try yourself!

Prelude> :type ([1,2,3]++)
([1,2,3]++) :: (Num a) => [a] -> [a]

Prelude> ([1,2,3]++) [4,5,6]
[1,2,3,4,5,6]

To be precise,([1,2,3] ++) is a special syntax for partial application on infix operators, calledsection-
ing. It is also allowed to write(++ [1,2,3]) for the function that appends[1,2,3] to a list. Since
strings are lists of characters inHaskell, the following is possible.

Prelude> map ("<"++) (map (++">") ["html", "head", "body"])
["<html>","<head>","<body>"]

Higher order functions and partial application allow for a very compact notation which reduces the
need for specialized library functions or library functions that do very different things depending on type
and number of the passed arguments. Even more, the latter is not possible inHaskell because it would
conflict withHaskell’s static typing and the partial application of functions.

3 Architecture

In this section we describe the components of the parallel-web translation tool.

3.1 Data structures

First let us introduce some types, that are essential for our work. We do not give the exact types of the
implementation but slightly simplified ones.

The first type isName, which is used for tag and attribute names. It will use lower case letters for
simple processing. The simplest definition forNamewould be atype synonymfor String , that is,Name
would be just a textual substitute forString .

> type Name = String

Actually, in the implementation it is declared bynewtype as a type which is incompatible toString , in
order to increase type safety.

An attribute is a pair of a name and a value. The value is in principle a string, but we need different
sorts of strings, as we will see later. Thus the type synonymAttribute has thetype parameterstr .

> type Attribute str = (Name, str)

In the first phase of the HTML document processing the input is converted to a list of tags. It need not
to satisfy properties like matching open and close tags, and thus is also called atag soup. The respective
Haskell library is useful in itself for simple tasks that do not require a valid HTML structure, like collecting
all papers that an author presents on his publication list in the WWW. But this library also proved useful as
a lexer for a HTML tree parser.

3

For a tag a type synonym is not powerful enough. We need analgebraic data type(???) (for C
programmers: a union). This is declared bydata and such types are distinct from all other types defined
this way. The following definition says that a tag is either an open tag with a name and a list of attributes,
a close tag with a name, a plain text, a comment, a special tag like<!DOCTYPE>or a warning. Warnings
are inserted in the tag soup by the lexer whenever syntax errors occur. Ampersands that are not part of a
HTML entity references are such errors.

> data Tag str =
> TagOpen Name [Attribute str]
> | TagClose Name
> | TagText str
> | TagComment String
> | TagSpecial String String
> | TagWarning String

Suitable choices for thestr parameter are the built-inString type based on Unicode characters and
other string types provided by libraries that address for instance efficiency. For HTML/XML processing
we also need a type which handles XML entities. An XML character can be a plain character, a numeric
character reference or a character entity reference.

> type XMLString = [XMLChar]
>
> data XMLChar =
> Char Char
> | NumericRef Int
> | NamedRef String

For our application a tag soup has not enough structure. We need to distinguish text enclosed in
<script> tags and tags in a<form> environment from data in other contexts. To this end we de-
fine a very generic tree structure. A tree is recursively defined by being either a branch with branch specific
data and a list of sub-branches, or a leaf with leaf specific data.

> data Tree branch leaf =
> Branch branch [Tree branch leaf]
> | Leaf leaf
> deriving Show

For this generic tree we can already define traversal functions that we can later use for our HTML tree. A
simple one, saymapLeaves , may convert all leaf information using a function of typea -> b .

> mapLeaves :: (a -> b) -> Tree branch a -> Tree branch b
> mapLeaves f t =
> case t of
> Branch b ts -> Branch b (map (mapLeaves f) ts)
> Leaf l -> Leaf (f l)

Once again we want to stress, that lazy evaluation allows us to work with trees as if they are in memory
completely. But actually they are only build as deep as needed and they are flushed if obviously no longer

4

needed. However, see section 4.2 to see how we must take care, that there is no need to keep the whole
HTML tree in memory.

We define a HTML tree as a generic tree equipped with more concrete types for branch and leaf infor-
mation. More precisely, tags are the branches and texts, comments, warnings are the leaves. The string type
is again a parameter. Since the HTML data structure can be used more generally for XML processing and
since the famous Haskell libraries for HTML processing, namely HaXML and HXT, also address primarily
XML, we call the type for a HTML treeXMLTree , too.

> type XMLTree str = Tree (Branch str) (Leaf str)
>
> data Branch str =
> Tag Name [Attribute str]
>
> data Leaf str =
> String str
> | Comment String
> | Warning String

3.2 Rewrite hyper links

Updating hyper links in a document such that referred documents are translated, too, is the feature, that
distinguishes the parallel web from other online translators.

There are four kinds of links. For the following assume that we translate a document from
http://original.net/ and the translator on the translating server is calledtranslator .

1. Links to fragments in the same document like#section2 need no change.

2. Links to binary data like in and <body background="..."> ,
must be converted to absolute addresses, since the relative ones refer to the translating
server. In our example setting, the relative linkcontent.html would be converted to
http://original.net/content.html .

3. Links to HTML documents or plain texts like in , <meta
http-equiv="refresh" content="..."> , <link rel="contents"
href="..."> must be converted to absolute URLs and equipped with the URL of the translator.
The URL of the translator can be a relative one, since from the perspective of the web client the
translating server originates the translated page. The linkcontent.html would be replaced by
translator?source=http%3A%2F%2Foriginal-server.net%2Fcontent.html .

There is an exception from the rule: Hyper links may point to binary files. To be sure of what type
the linked content is, we would have to request the HTTP headers for all referred documents, which
is obviously too much overhead. Instead we inspect the file name extensions and guess whether their
content is binary or text. This heuristics works rather reliably in practice.

4. HTML forms require more effort. Firstly there is theaction attribute of the<form> tag which is
extended by the translator’s URL as explained above. Then there are the parameters of the translator
and the parameters of the form that must be mixed in the same form. To this end all parameters
of the translator are inserted as<input type=hidden name="name" value="value">
into the<form> container and the names of all<input> tags of the original form become prefixed
with "orig" . If the translator is called by submitting a form, then it reverses that procedure and
calls the original server with accordingly prepared CGI parameters.

This method is the same both for GET and POST requests. The difference is entirely in the reception
of the CGI arguments.

5

3.3 Translation

The translation phase is divided into two steps.

1. Identify the texts that can be translated.

2. Translate the translatable text.

We could also write a function which traverses the HTML tree and applies a given function to translatable
text. However we will see that inHaskell there is an important difference between stateless and stateful
translators, which require different traversing procedures. Separating the identification of translatable text
from the actual translation avoids code duplication.

Typical examples of translatable text are plain text, alternative image descriptions in , and button texts in<input type=submit value="..."> , unless their content is
submitted to the CGI server (which is the case if thename attribute is also present). Typical examples
of non-translatable text are plain text enclosed in<script> and most attribute values, including those
containing hyper links.

We have a general problem with stylistic markup in a text: If only a part of a word is highlighted, say
irregular , the word appears as multiple words to the translator. However, it is generally not
possible to highlight the translated word equivalently.

For word-wise translators the text is additionally split into words and punctuation, words into sub-
words, and words are canonically turned to lower-case.

*Grammar> splitText "MetaFont, MetaPost and PostScript"
[(CapitalizedWord,"meta"),(CapitalizedWord,"font"),
(Punctuation,","),(CapitalizedWord,"meta"),(CapitalizedWord,"post"),
(Punctuation," "),(LowerCaseWord,"and"),(Punctuation," "),
(CapitalizedWord,"post"),(CapitalizedWord,"script")]

As mentioned above, the translators fall into two categories:

• Stateless translators translate cannot remember anything of what they have translated so far. Every
occurrence of the same word is translated to the same translated word. The order of the input words
determines the order of the output words, but not their translation. A simple example is the replace-
ment of all vowels by the same vowel. The type of a stateless translator isString -> String .

• Stateful translators keep track of a state. Reordering the words can change the result to something
entirely different. Examples are translators that act pseudo-randomly (their state is the random seed),
and a translator which adds word counts to the words (its state is the counter).

The type of a stateful translator isString -> (s -> (String, s)) . That is, given a text
and a state of types , the translated string and the updated state are returned. This is usually con-
densed toString -> State s String and further generalized toMonad m => String
-> m String , where, as the type suggests,m is a monad. Monads are the usual way to handle
state inHaskell, but the concept is more general and by far not restricted to stateful computation.
Monadic tree traversal functions immediately allow for non-deterministic translators, translators with
I/O interaction, or with exception handling.

For a nice introduction to monads for I/O interaction see [PJ02].

What would have happened, if we translated texts immediately as we identify it? The problem is,
that in contrast to imperative programming style we want to separate the logical steps. We want to say
“translate all texts of kind A in the tree and translate all texts of kind B in the tree”. Consider the
tag <tag attrB="first" attrA="second"> whereattrA belongs to kind A andattrB to
kind B. If we merge the identification and translation, then the word counting translator results in<tag
attrB="first(2)" attrA="second(1)"> . This is not only counterintuitive (note the pun!), but
it does also obstruct lazy processing:attrB can be processed only afterattrA has been read. Thus its
content must be kept in memory for the timeattrA is translated.

6

Stateful and stateless translators could be unified as stateful translators, where originally stateless trans-
lators get an empty state. Would it be a good idea to handle stateful and stateless translators with the same
traversing function? Certainly not. Stateless translators are much more flexible in use. Since they do not
depend on each other, the compiler can freely choose the order of execution, it could in principle distribute
translation of several parts over multiple processors. A very practical aspect is efficiency: If you request
only one paragraph of a translated document,Haskell’s run-time system will parse the input document only
until the end of the corresponding input, but actually translates only the requested paragraph. In contrast
to that, a stateful translator depends on all translations done before, that is, for translation of the requested
paragraph the whole text preceding it must be translated, too.

We observe two things:

1. Due toHaskell’s pure functional nature and its strict type system, dependencies of a function on a
state must be made explicit by its type and due to laziness we must take care, not to make everything
stateful.

2. However we can use interim data, to separate out all steps that are not affected by state. Laziness
allows to combine them again with almost no loss of efficiency. A compiler optimization called
fusionwill probably remove these interim data structures.

That is, laziness is allowed only by the pure functional paradigm, but laziness weakens the inconveniences
introduced by the pure functional paradigm.

3.4 Other components

The parallel web is not a monolithic project but uses several otherHaskell libraries.

• The Haskell Web Server [Mar00] is used for delivering translated pages. Extended versions with
CGI scripts exist [Thi02, Bri07], but this basic version was chosen for reasons of security.

• The HTTP library [GB+07] is used as HTTP client for downloading HTML pages from other servers.

• From HaXML [Wal07] and HXT [Sch07] some data structures, data tables and functions are im-
ported, like those for decoding characters (UTF-8, ISO-Latin) and XML entities and relations of
HTML tags (self-closing tags like
 , mutual closing tags like<p>, , <tr>).

• The Tag Soup library [Mit07] was extended and used as a lexer for the HTML tree parser.

3.5 Putting everything together

For our translation application we employ lazy evaluation as follows: We want to keep as little as necessary
data in memory. That is, we want to read data from the source, translate it and quickly send it to the client.
For the translation of current data it is not necessary to know whether more text follows, may it be infinitely
much or may there be a read error. In an imperative language this would be solved by a loop, that repeatedly
reads a reasonable amount of input, translates it, sends it to the web client. In contrast to that, we do not
want to program and test these atomic steps, but we want to separate our program into logical steps. Each
of this logical steps transforms formally the whole HTML document, but when these steps are applied in
sequence, then actually they are applied simultaneously. That is the document is scanned only once.

The imperative approach makes it hard to parameterize the steps within the loop. Say you want to skip
the hyper link modification on user request. You have to extend the loop to check this condition. Differently
with lazy evaluation: We can omit the link modification step conditionally in the chain of transformations.
Or consider the conditional translation of parts of the document. E.g. program text should not be translated
by a translator that is designed for natural languages. Thus we want to say: Text enclosed in<script>
and<pre> tags shall not be translated. In our implementation we write it just this way. In an imperative
loop based implementation we had to maintain a loop-global variable which says whether to translate, and
whose value is switched whenever<script> or </script> occurs.

The list of logical steps follows. Each step corresponds to a function, which transforms formally
the whole input at once. Actually, when applied in sequence, the atomic operations are executed in an

7

interleaved way as the generation of the output requires it. E.g. for computing the first output character the
program finds out, that the first tag must be known. In order to know the first tag a sufficient amount of
characters must be read from the input and so on.

The logical transformations are

• Fetch data from foreign server (HTTP.Get)
IO String

• Lex tags
String -> TagSoup XMLString

• Parse into HTML tree
TagSoup XMLString -> XMLTree XMLString

• Determine encoding from<meta http-equiv="Content-Type"> tag
XMLTree XMLString -> Encoding

• Decode characters from UTF-8, ISO-Latin-1 etc. to Unicode
Encoding -> XMLTree XMLString -> XMLTree XMLString

• Decode HTML entities to Unicode characters
XMLTree XMLString -> XMLTree String

• Modify links
XMLTree String -> XMLTree String

• Identify translatable text
XMLTree String -> XMLTree (Bool, String)

• Translate non-monadic
(String -> String) -> XMLTree (Bool, String) -> XMLTree String

• or translate monadic
Monad m => (String -> m String) ->

XMLTree (Bool, String) -> m (XMLTree String)

• Encode Unicode by HTML entities
XMLTree String -> XMLTree XMLString

• Format HTML
XMLTree XMLString -> String .

4 Technical issues

4.1 Strong and static typing

Strong typing is suspected for being inefficient in the world of machine oriented programming dominated
by C. Static typing is mistrusted by the world of scripting languages represented by PHP, Perl, Python,
Ruby, Rebol, Rexx, Lua, because of expected lack of flexibility.Haskell is both strong and statically
typed, yet compilable and at a very high level of abstraction. Several experimental type extensions to
the standardHaskell 98 indicate the wish for more flexibility, while not giving up type safety entirely.
However, the largest part of the parallel web project does not need any extension. Here we want to sketch
one typical occasion where strong static typing proved being very useful.

It is seldom that programs are designed the right way from the beginning. When it comes to the
details, problems pop up, that are optimally solved by some global restructuring. Early versions of the
parallel web used theXMLString as the only data type. That is, the earlierXMLTree meant, what is
now represented byXMLTree XMLString . XMLString s were converted to UnicodeString s and

8

back for each translation. It would have become an efficiency problem, if multiple translations would
be applied. But it was also immediately a problem, since the conversion from and toXMLString also
contained the conversion of special characters to HTML entities. That is, bothä and the ISO-Latin
ä were converted toä . This saved us encoding procedures for various character encodings. The
problem was that non-translated texts did not passed this canonicalization, and thus it happened that a
UTF-8 encoded character slipped through to a document without a character set specification.

This and the efficiency problem of duplicate conversion were solved by parameterizing theXMLTree
with a string type parameter. Now in a first step all strings are converted from XML to Unicode, then
several translations can take place, then the Unicode strings are translated back to a canonical XML string.
Static typing protects you from accidentally placing a translator in the wrong phase, i.e. translating XML
strings by a translator based on Unicode.

The rewriting consisted of adding a type parameter to each function signature and checking how general
the function is (XMLString only, String only, any string type). This was tedious, but the compiler
catched all missing or wrong replacements and in the end the code worked immediately, again.

4.2 How to keep lazy

Once you have implemented the logical steps with a maximum of laziness, i.e. with a minimum of data
dependencies, it is simple to compose the steps in an interleaved manner. However, lazy implementation
requires care. E.g. if you want to strip all spaces at the end of a string it is convenient to reverse the string,
strip the leading spaces and reverse the character order again.

Prelude> reverse (dropWhile Char.isSpace (reverse "test text "))
"test text"

However the first character of a reversed string is the last character of the input string. Thus requesting
only the first character of the reversed string means consuming the whole input string. A solution which
preserves laziness must process the list beginning from the end. An implementation of this idea is not
longer than that ofdropWhile , but it is certainly not obvious, why it reduces data dependencies.

Prelude> let dropWhileRev p = foldr (\x xs -> if p x && null xs then [] else x:xs) []
Prelude> dropWhileRev Char.isSpace "test text "
"test text"

Another example is the handling of errors. The HTML parser could be designed to return an error
message instead of a HTML tree in case of a HTML syntax error. We would give it the typeString
-> Either String XMLTree . However, for the decision whether there is an error in the whole
document the complete input must be parsed. This design clearly forbids a lazy transformation of data.
Thus we must handle errors as they arise. We could collect them in a list (typeString -> (XMLTree,
[String])), or we store them in theXMLTree structure. As mentioned in section 3.1, we used the
second approach and emit errors as comments after translation.

Character encoding in HTML confronts us with a paradoxical situation: The encoding can be given in a
<meta> tag which itself is encoded. This only works under the assumption that the content of the<head>
tag can be parsed successfully as ASCII (or ISO-Latin-1) text. We must scan for such a<meta> tag, but
we must be prepared that no such tag is present. We can start decoding only after the decoding information
is found or we become confident that there is no such information in the document. It is essential that we
stop the search at the end of the<head> tag, or at the beginning of<body> . This way, the first character
of the output depends on all characters of the<head> block in the input, but there seems to be no way to
reduce this dependency.

In summary, the programmer has to care about keeping the data dependencies at a minimum.

4.3 Security

On the one hand aHaskell web server perfectly fits the “security by obscurity” philosophy, buffer overruns
are in principle not possible, and type safety reduces unexpected situations at run-time. On the other hand

9

the Haskell web server still lacks security techniques, like HTTPS and SSL, that are found in the big
standard servers. Additionally the increasing popularity ofHaskell together with provocative claims like
“Haskell is safe” may encourage people to search and finally find security holes also in aHaskell web
server.

5 Conclusion

Haskell cannot do magic, but makes possible things maintainable. You still have to program, it needs time,
and you can make errors. However errors can be found early, often at compile time.

The development of the parallel web takes place at SourceForgehttp://sourceforge.net/
projects/parallelweb and a running version of the server can be tested athttp://www.
parallelnetz.de/ .

References

[Bri07] Bj örn Bringert. Haskell Web Server 2: A web server including CGI.http://www.cs.
chalmers.se/˜bringert/darcs/hws-cgi/ , 2007.

[Dau04] Hal Daume. Yet Another Haskell Tutorial.http://www.cs.utah.edu/˜hal/docs/
daume02yaht.pdf , 2004.

[GB+07] Warrick Gray, Bj̈orn Bringert, et al. Haskell HTTP package.http://www.haskell.
org/http/ , 2007.

[HHPPJ04] Kevin Hammond, Cordelia Hall, Will Partain, and Simon Peyton Jones. GHC: The Glasgow
Haskell Compiler.http://www.haskell.org/ghc/ , 2004.

[Hud89] Paul Hudak. Conception, evolution, and application of functional programming languages.
ACM Comput. Surv., 21(3):359–411, 1989.

[Hug89] John Hughes. Why functional programming matters.The Computer Journal, 32(2):98–107,
1989.

[JR04] Mark P Jones and Alastair Reid. Hugs 98.http://www.haskell.org/hugs/ , 2004.

[Mar00] Simon Marlow. Writing High Performance Server Applicatins in Haskell. Case study: A
Haskell Web Server. Technical report, Microsoft Research Ltd., Cambridge, July 2000.

[Mit07] Neil Mitchell. Haskell Tag Soup library. http://www-users.cs.york.ac.uk/
˜ndm/tagsoup/ , 2007.

[PJ98] Simon Peyton Jones. Haskell 98 language and libraries, the revised report.http://www.
haskell.org/definition/ , 1998.

[PJ02] Simon Peyton Jones. Tackling the awkward squad: monadic input/output, concurrency, excep-
tions, and foreign-language calls in haskell. Technical report, Microsoft Research, Cambridge,
July 2002.

[Sch07] Uwe Schmidt. Haskell XML Toolbox. http://www.fh-wedel.de/˜si/
HXmlToolbox/ , 2007.

[Thi02] Peter Thiemann. WASH/CGI: Server-side Web Scripting with Sessions and Typed, Composi-
tional Forms. Technical report, Universität Freiburg, 2002.

[Tho99] Simon Thompson.Haskell: The Craft of Functional Programming. Pearson, Addison Wesley,
second edition, 1999.

[Wal07] Malcolm Wallace. HaXml.http://www.cs.york.ac.uk/fp/HaXml/ , 2007.

10

http://sourceforge.net/projects/parallelweb
http://sourceforge.net/projects/parallelweb
http://www.parallelnetz.de/
http://www.parallelnetz.de/
http://www.cs.chalmers.se/~bringert/darcs/hws-cgi/
http://www.cs.chalmers.se/~bringert/darcs/hws-cgi/
http://www.cs.utah.edu/~hal/docs/daume02yaht.pdf
http://www.cs.utah.edu/~hal/docs/daume02yaht.pdf
http://www.haskell.org/http/
http://www.haskell.org/http/
http://www.haskell.org/ghc/
http://www.haskell.org/hugs/
http://www-users.cs.york.ac.uk/~ndm/tagsoup/
http://www-users.cs.york.ac.uk/~ndm/tagsoup/
http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.fh-wedel.de/~si/HXmlToolbox/
http://www.fh-wedel.de/~si/HXmlToolbox/
http://www.cs.york.ac.uk/fp/HaXml/

	Introduction
	Functional programming basics
	Architecture
	Data structures
	Rewrite hyper links
	Translation
	Other components
	Putting everything together

	Technical issues
	Strong and static typing
	How to keep lazy
	Security

	Conclusion

