
1

Bounds for smoothness of refinable functions
Henning Thielemann

Abstract— The V ILLEMOES machine can be used to
compute theSOBOLEV smoothness of a refinable function.
We start with presenting this technique. It involves the
computation of the spectral radius of a special matrix
which has at least quadratic time complexity with respect
to the refinement mask size. For the one-dimensional case
we deduce by linear algebra some simple estimates which
require only a few basic operations on the mask coefficients
with a total of linear time complexity. For orthogonal
DAUBECHIES and biorthogonal CDF wavelet generators
the estimates are compared to the known regularities.

I. I NTRODUCTION

Smoothness1 of functions is often measured
in terms of HOELDER continuity and SOBOLEV

smoothness. It is a difficult topic how to compute
such smoothness measurements from a known re-
finement mask of a refinable function but several
authors created practical techniques for this purpose
[Vil94], [Eir92], [Con90], [Dau92].

The VILLEMOES machine [Vil94], [BDM00] is a
popular method for computing the global SOBOLEV

smoothness of a refinable function. It consists
mainly of the computation of the largest eigenvalue
of a so called transition matrix. It is easy structured
for one-dimensional problems and fast enough to
determine the smoothness of single given refinable
functions. However, for automatic generation of
smooth refinable functions e.g. by iterative correc-
tion it is too time-consuming to start the VILLE -
MOES machine for each iteration.

By linear algebra we will derive some simple es-
timates from the VILLEMOES theory which involve
only a few basic operations. Some estimates show
theoretical limits of the smoothness depending on
the length of the filter mask and one allows for
verification whether a constructed wavelet is smooth
enough.

II. D EFINITIONS

The VILLEMOES machine is a technique which
computes the SOBOLEV smoothness of a refinable

1the termregularity is avoided according to [SN97]

function straight from the coefficients of the refine-
ment mask.

Definition 1: The vectorh with h ∈ RZ and a
finite number of non-zero entries and

∑
k∈Z hk = 1

is called arefinement maskfor the functionϕ if

ϕ(t) = 2 ·
∑
j∈Z

hjϕ(2t− j) (1)

holds. Vice versa the functionϕ is called
refinable with respect to the mask h.
For ν = min {j ∈ Z : hj 6= 0} and κ =
max {j ∈ Z : hj 6= 0} define the index set
I = {ν, . . . , κ} which is the support of the
maskh.

To be able to state VILLEMOES result about
the smoothness of refinable functions we need the
notion of a RIESZ basis, especially a RIESZ basis
of integer translates of a refinable function.

Definition 2: A sequence(fk)k∈Z of linear in-
dependent functionsfk from a HILBERT spaceH
is called a RIESZ basis of H if the set of linear
combinations offk is dense inH and the norm inH
is equivalent to thè2 norm of expansion coefficient
sequences, that is

∃(C1, C2) ∈ R2
+ ∀a ∈ RZ

C1 · ‖a‖2
2 ≤

∥∥∥∥∥∑
k∈Z

akfk

∥∥∥∥∥
2

H

≤ C2 · ‖a‖2
2

.
Definition 3: Let ϕk beϕ translated byk, that is

∀t ∈ R : ϕk(t) = ϕ(t− k).
Definition 4: If the sequence of translates

(ϕk)k∈Z from a HILBERT spaceH forms a RIESZ

basis of the closure of its linear span, we say that
ϕ has the RIESZ basis propertyB (ϕ), that is

B (ϕ) ⇔ ∃(C1, C2) ∈ R2
+ ∀a ∈ RZ

C1 · ‖a‖2
2 ≤

∥∥∥∥∥∑
k∈Z

akϕk

∥∥∥∥∥
2

H

≤ C2 · ‖a‖2
2 .

For some considerations it is easier to switch to
the FOURIER space. A FOURIER transform maps a
vectorh to a trigonometric polynomial̂h.
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Definition 5: Given a maskh define the trigono-
metric polynomial̂h:

ĥ(ξ) =
∑
k∈Z

hke
−ikξ.

Definition 6: Given a maskh define the adjoint
filter h∗:

∀j ∈ Z : h∗j=h−j.

It holds∀ξ ∈ R : ĥ(ξ) = ĥ∗(ξ). For the convolution
of a maskh with its adjoint holds

ĥ ∗ h∗ = ĥ · ĥ =
∣∣∣ĥ∣∣∣2 .

Definition 7: For a given maskh with finite
supportI the matrixPh with Ph ∈ RI2

is defined
as

Ph = (h2j−k)(j,k)∈I2

=



hν

hν+2 hν+1 hν

hν+4 hν+3 hν+2 hν+1 hν

... ... ... ... ... ...
hκ hκ−1 hκ−2 hκ−3 hκ−4

hκ hκ−1 hκ−2

hκ


and the special matrix2Ph∗h∗ is called thetransition
matrix of h [SN97].

The matrixPh describes a convolution with sub-
sequent subsampling by two. If one evaluates the
refinement equation (1) for different integerst one
discovers a dependency that allows for computation
of the values of the refinable functionϕ at integer
values:

ϕ(ν)
ϕ(ν + 1)

...
ϕ(κ)

 = 2Ph ·


ϕ(ν)

ϕ(ν + 1)
...

ϕ(κ)

 .

The structure of the eigenvalue spectrum of such
matrices is the key for measuring the smoothness of
wavelets.

III. V ILLEMOES MACHINE

Most commonly the smoothness of a function is
described by its membership in a space of functions
of certain degree of smoothness, where the family
of SOBOLEV spaces and the family of HOELDER

spaces are the most popular ones.

To describe spaces with fractional degrees of
smoothness we make use of the FOURIER trans-
form. The FOURIER transform of a functionf is
denoted byf̂ . Note that we use the same notation
for the fourier symbol of a discrete vector as well
as for the fourier transform of a real function since
there is a certain analogy.

Further on we needS (R) which is the SCHWARZ

space consisting of fast decaying arbitrarily often
differentiable functions and its dual spaceS ′ (R)
which is the collection of all complex-valued tem-
pered distributions onR.

For more compact notation we will use the
FOURIER multiplicator ϑs

q.

ϑs
q(ξ) = (1 + |ξ|q)s/q

The key component of computing smoothness
measures for refinable functions is the following
operation defined for a maskm:

1) Extract the factorcos2 ξ
2

as often as possible
from m̂(ξ). That is chooseK such that

m̂(ξ) =

(
cos

ξ

2

)2K

· ĥ(ξ)

whereh is a mask without a double zero atπ,
i.e. ĥ(π) 6= 0 or ĥ′(π) 6= 0. Note thatcos2 ξ

2

corresponds to the coefficient vector
(

1
4
, 1

2
, 1

4

)
.

2) Set-up the matrixPh and compute the abso-
lute value of its largest eigenvalue. This is
denoted by thespectral radius% (Ph).

3) The result of the operation is

Mm = 2K − log2 % (2Ph)

= 2K − 1− log2 % (Ph) .

A. HOELDER continuity

The HOELDER-ZYGMUND function spaces
Cs (R) with s ∈ R ands ≥ 0 contains all functions
that are up todse times differentiable and some
more functions. A characterization can be given
using a smooth dyadic resolution of the unity
{ψj}j∈N0 and the operatorD which ”redirects”
the multiplication with ψj to the FOURIER

representation ([Tri92], pages 14-17):

Cs (R) =

{
f ∈ S ′ (R) :

supt∈R,j∈N0
2js |ψj(D)f(t)| <∞

}
Lemma 1:{

f ∈ S ′ (R) : ϑs
1 · f̂ ∈ L1 (R)

}
⊂ Cs (R) .
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Proof: For all j ∈ N0 and t ∈ R it holds for
a smooth dyadic resolution of unity{ψj}j∈N0 like
those described in [Tri92], page 15 that

2js |ψj(D)f(t)| ≤ 2js

∫ ∣∣∣ψj(ξ)f̂(ξ)
∣∣∣ d ξ

≤ 2s

∫
(1 + |ξ|)s

∣∣∣f̂(ξ)
∣∣∣ d ξ.

and thus it is true also for the supremum.
An estimate of the HOELDER continuity for refin-

able functions in terms of their refinement mask was
derived from this embedding by Conze and Raugi
[CR90], [Con90], for a summary see [Dau92]. The
estimate can be made more simple in the case that
m̂ is a positive function, that is∀ξ ∈ R : m̂(ξ) ≥ 0.

Theorem 1:Given the maskm decide:

1) If m̂ is positive, sets0 = Mm.
2) If m̂ is not positive, sets0 = 1

2
(Mm∗m∗ − 1).

Let ϕ be the refinable function associated with the
maskm. Then it holds

∀s ∈ R : s < s0 ⇒ ϕ ∈ Cs (R)

B. SOBOLEV smoothness

A SOBOLEV spaceW s
p (R) for s ∈ N0 is defined

as the space of distributions fromS ′ (R) whose
derivatives up to orders are in Lp (R). This idea
was generalized to the SOBOLEV spacesHs

p (R) of
fractional orders [Tri92]. We restrict ourselves to
Hs

2 (R) which allows for a characterization that was
used by VILLEMOES to explore the smoothness of
refinable functions.

Definition 8: The SOBOLEV function space
Hs

2 (R) is defined as

Hs
2 (R) =

{
f ∈ S ′ (R) : ϑs

2 · f̂ ∈ L2 (R)
}
.

The SOBOLEV smoothness of a refinable func-
tion can be characterized similarly to Theorem1
([Vil93], theorem 2.3).

Theorem 2:Given the maskm let s0 = 1
2
Mm∗m∗.

Then it holds

1) ∀s ∈ R : s < s0 ⇒ ϕ ∈ Hs
2 (R)

2) ∀s ∈ R : B (ϕ) ∧ ϕ ∈ Hs
2 (R) ⇒ s < s0

that meanss0 can be regarded as an accurate mea-
surement of the smoothness ofϕ.

IV. SIMPLE ESTIMATES

Theorem1 and Theorem2 states that the smooth-
ness of a refinable function depends on the number
of factors

(
1 + e−iξ

)
in m̂(ξ) and on the remaining

factor ĥ(ξ). More precisely the spectral radius of
eitherPh or Ph∗h∗ is the critical quantity. The num-
ber of factors

(
1 + e−iξ

)
is easy to handle normally,

but the largest eigenvalue ofPh is not. Thus we will
focus on the remaining maskh and% (Ph).

Remark 1:As asserted in Definition1 the sum
of the coefficients of the filter maskh is always1(
ĥ(0) = 1

)
. Hence the sum of the coefficients of

h ∗ h∗ also equals1

(
ĥ ∗ h∗(0) =

∣∣∣ĥ(0)
∣∣∣2 = 1

)
.

According to Theorem1 and Theorem2 we will
consider only matricesP of positive filter polyno-
mials and their filter coefficients will always sum
up to 1.

Lemma 2:The first and the last non-zero mask
coefficient,hν andhκ respectively, are eigenvalues
of the matrixPh.

Proof: Expand the determinantdet(Ph − λI)
for the top and the bottom row.

There are some simple general ways of estimating
the spectral radius of a matrix. E.g.% (Ph) ≤ ‖Ph‖
holds for any compatible matrix norm. We will show
that such estimates are too weak in some cases. This
should motivate the search for stronger estimates as
presented at the end of this section.

The following statements show that the column
and row sum matrix norms are bounded from be-
low. Thus estimates based on these norms can not
benefit from the fact that longer filters allow smaller
spectral radii.

Lemma 3: 1) If κ − ν is even, then the row
sum norm of the matrixPh is at least1.

2) If κ−ν is odd, then the row sum norm of the
matrix Ph is at least1

2
.

Proof: Case2 | (κ− ν):
The ν+κ

2
th row of Ph which is the center row

consists of all mask coefficientshν , . . . , hκ thus

‖Ph‖∞ = max
j∈I

∑
k∈I

∣∣∣(Ph)j,k

∣∣∣
≥

∑
k∈I

∣∣∣(Ph) ν+κ
2

,k

∣∣∣ =
∑
k∈I

|hk|

≥

∣∣∣∣∣∑
k∈I

hk

∣∣∣∣∣ = 1
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Case2 - (κ− ν):
The ν+κ−1

2
th row of Ph consists of all mask coeffi-

cients excepthκ and theν+κ+1
2

th row ofPh consists
of all mask coefficients excepthν and thus

‖Ph‖∞ ≥ max
j∈{ ν+κ−1

2
, ν+κ+1

2 }

∑
k∈I

∣∣∣(Ph)j,k

∣∣∣
= max {|hν | , |hκ|}+

∑
k∈I\{ν,κ}

|hk|

≥ 1

2
(|hν |+ |hκ|) +

∑
k∈I\{ν,κ}

|hk|

≥ 1

2

∑
k∈I

|hk|+
∑

k∈I\{ν,κ}

|hk|


≥ 1

2

1 +
∑

k∈I\{ν,κ}

|hk|


≥ 1

2

The column sum norm might be better suited.
Lemma 4:The column sum norm of the ma-

trix Ph is at least1
2
.

Proof: For ν = κ it must be hν = 1
(Definition 1) and thus‖Ph‖1 = 1. For ν < κ the
matrix Ph has at least two columns. We consider
the first two:

‖Ph‖1 = max
k∈I

∑
j∈I

∣∣∣(Ph)j,k

∣∣∣
= max

k∈{ν,ν+1}

∑
j∈I

∣∣∣(Ph)j,k

∣∣∣ = max
k∈{0,1}

∑
j∈(k+2Z)

|hj|

≥ 1

2

∑
k∈{0,1}

∑
j∈(k+2Z)

|hj|

≥ 1

2

∑
j∈I

|hj|

≥ 1

2

∣∣∣∣∣∑
j∈I

hj

∣∣∣∣∣ =
1

2

It is clear that long filters allow for at least
the smoothness of short filters simply because long
filters have additional degrees of freedom compared
with short filters. The next statement quantifies this
obserservation and gives a theoretical limit of the
smoothness for a refinable function depending on
the length (#I = κ− ν + 1) of the mask.

Lemma 5:The spectral radius of the matrixPh

is always at least1
#I .

% (Ph) ≥
1

#I
Proof: We make use of the fact that the

diagonal of Ph consist of all coefficients of the
mask. We use the index setI for the eigenvalues
λj, too, although the eigenvalues do not correspond
one-to-one to the mask coefficients.

#I ·max
j∈I

|λj| ≥
∑
j∈I

|λj|

≥

∣∣∣∣∣∑
j∈I

λj

∣∣∣∣∣ = |trace(Ph)|

=

∣∣∣∣∣∑
j∈I

hj

∣∣∣∣∣ = 1

However the estimate of the smoothness depend-
ing on the mask can be refined usingtraceP 2

h

instead of tracePh. More generally we observe
that if Ph has eigenvaluesλν , λν+1, . . . , λκ thenP n

h

has eigenvaluesλn
ν , λ

n
ν+1, . . . , λ

n
κ. Thustrace(P n

h ) =∑
j∈I λ

n
j . It is Ph · x = (h ∗ x) ↓ 2 where y ↓ 2

denotes the subsampling ofy by a factor of2 (See
the appendix for further details.).

We are interested in a similar characterization for
P n

h .
Lemma 6:

P n
h · x =

(
h ↑ 2n−1 ∗ . . . ∗ h ↑ 2 ∗ h ∗ x

)
↓ 2n

Proof: We use induction overn. First we
verify that

P 0
h · x = x = x ↓ 20

For the induction step we need (4) of Lemma10 of
the appendix:

P n
h · x =

(
h ↑ 2n−1 ∗ . . . ∗ h ∗ x

)
↓ 2n

P n+1
h · x = P n

h · Ph · x
=

(
h ↑ 2n−1 ∗ . . . ∗ h ∗ (h ∗ x) ↓ 2

)
↓ 2n

(4)
= (h ↑ 2n ∗ . . . ∗ h ↑ 2 ∗ h ∗ x) ↓ 2n+1.

For simplification we will call the result of
the convolution cascadeHn. It has support
{(2n − 1)ν, . . . , (2n − 1)κ}.

Hn = h ↑ 2n−1 ∗ . . . ∗ h ↑ 2 ∗ h
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With this notion we can characterizeP n
h using

convolution and downsampling

P n
h · x = (Hn ∗ x) ↓ 2n

and from this we can derive the matrix representa-
tion

P n
h =

(
Hn

2nj−k

)
(j,k)∈I2 .

We realize that the trace ofP n
h is essentially a

sum of selected coefficients ofHn so in the next
step we will explicitly compute the coefficients of
Hn. Note that due to Definition1 the maskHn is
an infinite vector with finite support.

Lemma 7:With the index set

J n
j =

{
a ∈ Zn : a0 + 2a1 + · · ·+ 2n−1an−1 = j

}
it holds that

(Hn)j =
∑
a∈J n

j

n−1∏
l=0

hal
(2)

.
Proof: The convolution of some finitely sup-

ported signalsx0, . . . , xn−1 that isy = x0∗· · ·∗xn−1

can be computed component-wise as

yj =
∑
b∈Zn

b0+···+bn−1=j

n−1∏
l=0

(xl)bl
.

For xl = h ↑ 2l, i.e.

(xl)k =

{
hk/2l : k ≡ 0 mod 2l

0 : else

and bl = 2lal we obtain the claim.
Using the explicit representation ofHn the trace

of P n
h can be computed by

trace(P n
h ) =

∑
j∈I

Hn
(2n−1)j

=
∑

j∈(2n−1)I

Hn
j

=
∑

j∈(2n−1)I

∑
a∈J n

j

n−1∏
l=0

hal

and because of the finite support ofh (Definition 1)

=
∑

j∈(2n−1)Z

∑
a∈J n

j

n−1∏
l=0

hal
.

For fixed n the index setsJ n
j are disjoint with

respect toj. Thus the sums can be merged using
a new index setKn

0 . We want to introduce a more
generic definition forKn

k :

Kn
k =

⋃
j∈(2n−1)Z

J n
j+k

trace(P n
h ) =

∑
a∈Kn

0

n−1∏
l=0

hal

This representation can still be improved for more
efficient computation. We note that the setKn

k is
(2n − 1)-periodic, i.e.Kn

k + (2n − 1)Zn = Kn
k . The

following identities may illustrate that:

Kn
k =

⋃
j∈Z

J n
(2n−1)j+k

= {a ∈ Zn :

a0 + · · ·+ 2n−1an−1 ≡ k mod (2n − 1)
}

= J n
k + (2n − 1)Zn.

We can use the periodicity to reduce the maskh
to length(2n− 1). To analyse this we will partition
Kn

k into the coarse grid(2n− 1)Zn and the setMn
k

of the multi-indices within one grid cell.

Mn
k = Kn

k ∩ {0, . . . , 2n − 2}n

Therefore the partition ofKn
k is

Kn
k = Mn

k + (2n − 1)Zn.

Now the trace ofP n
h can be computed more

efficiently.
Lemma 8:With the operatorSn

k that sums up
equidistant components of a vector, more precisely

Sn
kh =

∑
j∈Z

hk+(2n−1)j

it holds that

trace(P n
h ) =

∑
a∈Mn

0

n−1∏
l=0

Sn
al
h.
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Proof:

trace(P n
h ) =

∑
a∈Kn

0

n−1∏
l=0

hal

=
∑

a∈Mn
0

∑
b∈(2n−1)Zn

n−1∏
l=0

hal+bl

=
∑

a∈Mn
0

n−1∏
l=0

∑
j∈(2n−1)Z

hal+j

=
∑

a∈Mn
0

n−1∏
l=0

Sn
al
h

From the definition ofMn
k follows that for each

choice ofa1, . . . , an−1 there is exactly one matching
a0, thus #Mn

k = (2n − 1)n−1 which grows rather
fast for increasingn. A discrete FOURIER transfor-
mation can speed up the computation, but the time
consumed will still grow exponentially with respect
to n.

That is why this formula is only useful for
smalln. Especially fortrace(P 2

h ) it turns out to be
very handy. We will concentrate on this case for the
rest of this paper. It is

M2
0 =

{
(a, b) ∈ {0, 1, 2}2 : 0 ≡ a+ 2b mod 3

}
=

{
(a, b) ∈ {0, 1, 2}2 : 0 ≡ a− b mod 3

}
= {(0, 0), (1, 1), (2, 2)}

and thus

trace(P 2
h ) = (S2

0h)
2 + (S2

1h)
2 + (S2

2h)
2.

Theorem 3:For a given maskh with finite sup-
portI let yj = S2

jh andBh =
√
y2

0 + y2
1 + y2

2. Then
a lower bound for the spectral radius is given by

1√
#I

·Bh ≤ % (Ph) .

If the eigenvalues ofPh are all real then there is a
simple upper bound:

% (Ph) ≤ Bh.
Proof:

1)

#I ·max
j∈I

|λj|2 ≥
∑
j∈I

|λj|2

≥

∣∣∣∣∣∑
j∈I

λ2
j

∣∣∣∣∣
=

∣∣trace(P 2
h )

∣∣ = B2
h

2)

max
j∈I

|λj|2 ≤
∑
j∈I

|λj|2

=
∑
j∈I

λj
2 = B2

h

Remark 2:One might hope that the eigenvalues
of matrices of the formPh∗h∗ are always real. The
exampleh = (2, 0, 0,−1) disproves this assump-
tion. It is h ∗ h∗ = (−2, 0, 0, 5, 0, 0,−2) andPh∗h∗

has the eigenvalues±1± 3i,−2,−2, 5.
Indeed there is a family of filtersh which lead to

a constant value ofBh∗h∗ according to Theorem3
while the spectral radius ofPh∗h∗ is not bounded.
Such a family is{(1 + x, 0, 0,−x) : x ∈ R}.

Remark 3:One might also assume that the ex-
istence of acomplementary filterg (i.e. a filter g
such thath and g allow for perfect reconstruction,
see [DS98] for details), already implies that all
eigenvalues ofPh∗h∗ are real. This is also not true
since forh = (2, 0, 0,−1), g = (0, 0, 1, 0) the filter
g is complementary toh.

Whether the spectral radius is closer to the upper
bound or closer to the lower bound depends on the
distribution of the eigenvalues of the matrixPh. In
the case that the eigenvalues have similar magnitude
the spectral radius will be close to the lower bound.
If there are only a few large eigenvalues and many
small ones then the spectral radius will be close to
the upper bound.

A simple lower estimate for the spectral radius
that does not depend on the filter coefficients is
given by

Lemma 9:

% (Ph) ≥
1√

3 ·#I
.

Proof: We derive this from Theorem3 using
the inequality of quadratic and arithmetic mean√

1

3
(y2

0 + y2
1 + y2

2) ≥
1

3
(y0 + y1 + y2)

1√
3
·Bh ≥

1

3
and the last holds because

y0 + y1 + y2 =
∑
j∈I

hj = 1

due to Remark1.
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We will now consider an optimization for esti-
mating the SOBOLEV smoothness ofϕ. Accord-
ing to Theorem2 we have to processh ∗ h∗
instead of the pure filter maskh to that end. Then

Bh∗h∗ =
√∑2

j=0

(
S2

j (h ∗ h∗)
)2

. This can be further
simplified thus avoiding the need for an explicit
convolutionh∗h∗. With yj as defined in Theorem3
and

p1 = y0 + y1 + y2 = 1

p2 = y2
0 + y2

1 + y2
2

we obtain

S2
0(h ∗ h∗) = y0y0 + y1y1 + y2y2 = p2

S2
1(h ∗ h∗) = y0y1 + y1y2 + y2y0 =

p2
1 − p2

2

S2
2(h ∗ h∗) = y0y2 + y1y0 + y2y1 =

p2
1 − p2

2

and thus

Bh∗h∗ =

√
p2

2 + 2 ·
(

1− p2

2

)2

=

√
3

2

(
p2 −

1

3

)2

+
1

3

V. EXAMPLES

We will now compare our simple estimates with
the exact regularities provided by Theorem2 for two
standard families of wavelet bases. The considered
wavelet bases have filter polynomials that are not
positive in general thus the HOELDER smooth-
ness estimate according to Theorem1 is derived
from the SOBOLEV smoothness. Hence we only
consider estimates of the SOBOLEV smoothness.
The orthogonal DAUBECHIES wavelets as well as
the biorthogonal COHEN-DAUBECHIES-FEAUVEAU

wavelets (CDF) are chosen because they can be
automatically constructed also for high orders (see
[Dau92], chapters 6.1 and 8.3.4). The considered
filter masks lead to transition matrices with real
eigenvalues and thus both estimates of Theorem3
can be applied.

The complete algorithm for estimating the
SOBOLEV smoothness is

1) Let m be the filter mask.
2) Divide m̂(ξ) by the given power

(
1 + e−iξ

)K
,

the quotient iŝh(ξ). The maskh may have the
supportI.
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Fig. 1. SOBOLEV smoothness of DAUBECHIES wavelets (Nφ as in
[Dau92], 1φ is the HAAR generator) depending on the order of the
wavelets.

3) Compute the sumsyk =
∑

j∈Z hk+3j.
4) Compute the square sump2 = y2

0 + y2
1 + y2

2.

5) ComputeBh∗h∗ =
√

3
2

(
p2 − 1

3

)2
+ 1

3
.

6) Eventually the SOBOLEV smoothness limits0

is bounded by

K − log4 2Bh∗h∗ ≤ s0

and further if one knows that the eigenvalues
are all real then

s0 ≤ K − log4 2Bh∗h∗ +
1

2
log4 (2 ·#I − 1) .

Remark 4:Step 2 is numerical critical because
the resulting filter has coefficients that vary heavily
in magnitude, thus even simple criteria like the sum
of the coefficients being1 is infringed!

A. OrthogonalDAUBECHIES wavelets

For a given power of the factor
(
1 + e−iξ

)
in m̂(ξ) (this is considered as theorder) the
DAUBECHIES wavelet filter is the shortest one that
leads to an orthogonal wavelet basis. Actually there
are several filters possible for one order but they
all share the same filterm ∗m∗ and thus the same
SOBOLEV smoothness. Figure1 shows that the
upper estimate of the smoothness is at most1.5 too
high and the lower estimate at most0.5 too low.
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Fig. 2. SOBOLEV smoothness of the CDF primal generatorN,Nφ
depending on the orderN .

B. Biorthogonal spline wavelets (CDF)

In contrast to orthogonal bases the CDF wavelet
basis consists of two different generator functions,
that are a primal and a dual generator. The dual
generatoreN φ̃ is a Ñ th order B-spline, its Sobolev
smoothness iss0 = Ñ − 1

2
and this is also the

result of our estimate due to Theorem3 since
the filter consists only of a power of

(
1 + e−iξ

)
and the eigenspectrum of the transition matrix of
the remaining filter of length 1 will be estimated
exactly.

That is why the more interesting function is the
primal generator eN,Nφ whose filter contains the
N th power of

(
1 + e−iξ

)
and the remaining filter

depends only onN+ eN
2

. The dependency onN is
clear thus we content ourselves with the analysis
of (N,Nφ)N∈N which is a sequence of functions of
decreasing smoothness as can be seen in Figure2.

The maximum deviation from the lower bound is
0.4 and the deviation from the upper bound is at
most1.5.

APPENDIX

The following lemma gives a brief list of equiva-
lences that are useful when dealing with operations
on signals like convolution, upsampling, downsam-
pling.

Lemma 10:

(h ↑ k) ↓ k = h (3)

(h ↑ k) ↑ j = h ↑ (k · j)
(h ↓ k) ↓ j = h ↓ (k · j)
(g ∗ h) ↑ k = (g ↑ k) ∗ (h ↑ k)

(g ↑ k ∗ h) ↓ k = g ∗ (h ↓ k) (4)
Remark 5:The identity (4) is an exception due to

its asymmetry. The problem is that the distributivity
with respect to down sampling, that is(g ∗h) ↓ k =
(g ↓ k) ∗ (h ↓ k), does not hold in general.
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